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Abstract Although plant biotisation with arbuscular my-
corrhizal fungi (AMF) is a promising strategy for improv-
ing plant health, a better knowledge regarding the
molecular mechanisms involved is required. In this context,
we sought to analyse the root proteome of grapevine
rootstock Selection Oppenheim 4 (SO4) upon colonisation
with two AMF. As expected, AMF colonisation stimulates

plant biomass. At the proteome level, changes in protein
amounts due to AMF colonisation resulted in 39 differen-
tially accumulated two-dimensional electrophoresis spots in
AMF roots relative to control. Out of them, 25 were co-
identified in SO4 roots upon colonisation by Glomus
irregulare and Glomus mosseae supporting the existence
of conserved plant responses to AM symbiosis in a woody
perennial species. Among the 18 proteins whose amount
was reduced in AMF-colonised roots were proteins in-
volved in glycolysis, protein synthesis and fate, defence and
cell rescue, ethylene biosynthesis and purine and pyrimi-
dine salvage degradation. The six co-identified proteins
whose amount was increased had functions in energy
production, signalling, protein synthesis and fate including
proteases. Altogether these data confirmed that a part of the
accommodation program of AMF previously characterized
in annual plants is maintained within roots of the SO4
rootstock cuttings. Nonetheless, particular responses also
occurred involving proteins of carbon metabolism, devel-
opment and root architecture, defence and cell rescue,
anthocyanin biosynthesis and P remobilization, previously
reported as induced upon P-starvation. This suggests the
occurrence of P reprioritization upon AMF colonization in
a woody perennial plant species with agronomical interest.

Keywords Vitis sp. .Glomus mosseae .G. irregulare . Two-
dimensional electrophoresis . MALDI TOF-MS

Introduction

The benefits of arbuscular mycorrhizal (AM) symbiosis on
plant fitness are widely known, including improved mineral
nutrition in nutrient-poor soils and increased capability to
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overcome biotic and abiotic stresses (Azcón-Aguilar and
Barea 1996; Smith and Read 2008). Alleviation of damages
caused by soil-borne pathogens, including those that are
difficult to control by chemical and physical treatments, has
been reported in various mycorrhizal plants (St-Arnaud and
Elsen 2005; St-Arnaud and Vujanovic 2007; Pozo and
Azcón-Aguilar 2007). Sustainable agriculture and ecosystem
conservation have challenged scientists to consider the
management of arbuscular mycorrhizal fungi (AMF) as
biofertilisers and/or bioprotectors as an alternative to
standard fertilizers and pesticides (Whipps 2001; Harrier
and Watson 2004).

On a worldwide basis, grapes (Vitis species) are both the
most widely cultivated and economically important fruit
crop, encompassing approximately 8 million ha of arable
land (Vivier and Pretorius 2002). Due to Phylloxera attacks,
this perennial woody plant species is grafted onto resistant
rootstocks. The Selection Oppenheim 4 (SO4) rootstock, a
hybrid between Vitis berlandieri and Vitis riparia, is
commonly used for its ability to adapt to different types
of soil and environmental conditions (Reynier 2002). It is
tolerant to wet soils and especially suited for fertile soils
containing high organic matter. This rootstock produces a
large amount of roots and is very vigorous, allowing high
productivity, high fruit quality and regular production
(Giovannini 1999). However, it is susceptible to pathogen
attacks, and thus, the production of high-quality cuttings,
resistant/tolerant to root pathogens, is of crucial importance.

AMF form a symbiosis spontaneously with the roots of
grapevines and are present in most of the commercial
vineyards evaluated (Menge et al. 1983; Schubert and
Cravero 1985; Linderman and Davis 2001; Cheng and
Baumgartner 2004). Several authors have reported benefi-
cial effects of mycorrhizal inoculation of grapevines
(Nikolaou et al. 2003; Aguin et al. 2004; Cheng and
Baumgartner 2006; Karagiannidis et al. 2007; Camprubí et
al. 2008) although it is also established that different
mycorrhizal species may show distinct responses in growth
and nutrient uptake (Karagiannidis et al. 1995). This
property of AMF is now exploited for inoculating plants
to be transferred to micronutrient-deficient soils (Bavaresco
and Fogher 1992, 1996). The beneficial effect of AMF
inoculation in grapevine tolerance to pathogens has been
reported (Waschkies et al. 1994), but even if polyamines
have been suggested as playing a role in signalling
tolerance processes (Nogales et al. 2009), the cellular and
molecular mechanisms involved are yet largely unknown.

Recently, extensive insights into the AM symbiotic
program have been gained through the use of global
approaches that revealed genes or subsets of genes/gene
products which are essential to cell programs involved in the
different phases of the plant–AMF interactions (Liu et al.
2003, 2007; Wulf et al. 2003; Brechenmacher et al. 2004;

Güimil et al. 2005; Hohnjec et al. 2005; Balestrini and
Lanfranco 2006 and references therein; Massoumou et al.
2007; Recorbet and Dumas-Gaudot 2008 and references
therein; Fiorilli et al. 2009; Guether et al. 2009). Since the
model plant Arabidopsis is recalcitrant to AMF colonisation,
most knowledge on genes/proteins involved in arbuscular
mycorrhizal interaction, as listed above, came up from
studies performed on either models or agronomically
relevant annual plant species. It was therefore highly
pertinent to undertake similar investigations in a perennial
woody plant species such as grapevine. In addition, the
release of the complete genome of the model plant Vitis
vinifera (Jaillon et al. 2007) and the subsequent implemen-
tation of protein database have open opportunities for
identifying proteins with confidence by using mass finger
printing (PMF) following matrix-assisted laser desorption
time-of-flight mass spectrometry (MALDI-TOF MS). To our
knowledge, there are a limited number of proteomic studies
on grapevines (Sarry et al. 2004; Carvalho et al. 2005;
Castro et al. 2005; Vincent et al. 2006, 2007; Wang et al.
2009; Basha et al. 2010) with only one report that has paid
attention to the root proteome (Marsoni et al. 2005) and yet
nothing dealing with the root proteome responses to AMF
colonisation. Therefore, the aim of the current work was to
analyse the interaction between AMF associated to SO4
(V. berlandieri × V. riparia) rootstock cuttings under pot
culture conditions. Since development and functionality of
AMF may vary depending on the fungal strain, we compared
the SO4 rootstock responses to two AMF, i.e. Glomus
irregulare and Glomus mosseae, which are among the more
frequently utilized AMF. Plant biomass and AMF colonisa-
tion were measured and subsequent proteomic profiling
based on two-dimensional electrophoresis (2-DE) coupled to
MALDI-TOF MS was carried out for uncovering the root
proteome of SO4 rootstock cuttings upon AMF colonisation.

Material and methods

Biological material, growth conditions and experimental
design

SO4 rootstock (V. berlandieri × V. riparia) 30-day old
cuttings were transplanted into 400 ml pots containing a
sterile mix (2:1 v/v) of terragreen (Agsorb, Oil Dry
Corporation, IMC Imcore) and a neutral clay loam soil
(pH 7.8, 28 ppm Olsen P; Epoisses soil). Mycorrhizal
inoculation was performed by replacing 40 ml of Epoisses
soil with a soil-based inoculum (spores, roots and hyphae)
of G. irregulare (Stockinger et al. 2009) [formerly Glomus
intraradices N. C. Schenck & G. S. Smith (DAOM
181602)] or G. mosseae (BEG 12). Non-inoculated and
AMF-inoculated plants were watered daily (10 ml) with
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demineralised water and twice a week with Long Ashton
nutrient solution (Hewitt 1966) containing reduced phos-
phorous (0.13 mM Na2HPO4). Cuttings were grown under
controlled conditions (16-h photoperiod, 23:18°C day/
night, 60% relative humidity, 220 μE m−2 s−1 photon flux
density) for 5 weeks. At harvest, pots were immersed in tap
water to carefully remove the roots from the soil mix. Roots
were then gently rinsed with running tap water and then
with deionized water to eliminate any remaining soil
particles. Roots were immediately frozen in liquid nitrogen
and stored at −80°C until protein extraction. Plant shoots in
each treatment were pooled, and P content was measured
after nitroperchloric digestion (Johnson and Ulrich 1959).
The biological experiment consisted of three treatments
(non-mycorrhizal inoculation (Nm), inoculation with G.
irregulare or G. mosseae).

Mycorrhizal colonisation

The level of mycorrhizal colonisation was estimated on five
plant replicates for each treatment. At harvest, small parts
of mycorrhizal plants were randomly collected from the
whole root systems and stained with Shaeffer’s dye blue
after clearing with potassium hydroxide (Vierheilig et al.
1998). Mycorrhizal colonisation parameters were estimated
under light microscopy as described by Trouvelot et al. (1986).
Three parameters of mycorrhizal development were calculat-
ed with the MycoCalc program (http://www.dijon.inra.fr/
mychintec/Mycocalc-prg/download.html): frequency of my-
corrhiza in the root system (F%), intensity of the mycorrhizal
colonisation in the root system (M%) and arbuscule
abundance in mycorrhizal parts of root fragments (A%).

Protein extraction and two-dimensional electrophoresis

For protein analyses, four replicates of non-mycorrhizal and
mycorrhizal roots were submitted to protein extraction and
separation by 2-DE. Fresh material (1 g roots) was transferred
into a chilled mortar and ground to a fine powder with liquid
nitrogen. Phenolic protein extraction and solubilisation were
carried out according to Bestel-Corre et al. (2002). Protein
content was quantified by the method of Bradford as
modified by Ramagli and Rodriguez (1985) using BSA as a
standard. Samples were stored at −80°C until electrophoresis.
All reagents for gel electrophoresis, including 2-DE molec-
ular markers, were from Bio-Rad (Marnes-La-Coquette,
France). Isoelectric focusing (IEF) was performed on
immobilized 18 cm non-linear pH 3–10 pH gradient (IPG)
strips (Amersham Biosciences (AB), Uppsala, Sweden), in a
Multiphor II unit (AB). IEF strips were rehydrated overnight
with 350 μl of buffer (8 M urea; 4% w/v, 3-[(3-cholamido-
propyl) dimethylammonio]-1-propane-sulphonate; 20 mM
dithiothreitol; 2% v/v, IPG buffer, pH 3–10 and bromophenol

blue). Proteins (500 μg) were loaded onto the strips and
electrofocused at 20°C according to Dumas-Gaudot et al.
(2004). After isoelectric focusing, IPG strips were either
stored at −80°C or immediately equilibrated (Görg et al.
1987). Strips were then transferred onto 12%, pH 8.8, sodium
dodecyl sulphate (SDS)–polyacrylamide gels (Hoefer DALT,
AB). Separations were carried out overnight at 10°C and
90 V. Gels were stained with colloidal Coomassie blue G250
(Bio-Rad, Hercules, CA, USA; Mathesius et al. 2001).

Image analysis

Images were acquired using the Odyssey Infrared Imaging
System (LI-COR Biosciences, GmbH, Germany) at 700 nm
with a resolution of 169 μm. Image analyses were carried
out with the Progenesis SameSpots version 2.0 software
(Nonlinear Dynamics) according to manufacturer’s instruc-
tions. Spot volumes were normalized to the total spot
volume with a multiplication factor of 100. Means of spot
volumes between treated versus control samples were
compared using the ANOVA statistical package included
in SameSpots. Only differences with p<0.01 for random
occurrence were considered.

In-gel protein digestion, MALDI-TOF mass spectrometry
and peptide mass fingerprinting

Following extensive gel washing with water, spots of
interest were manually excised into small pieces with tips,
dried and stored at room temperature before mass spec-
trometry analyses. In-gel digestion was performed with the
Progest system (Genomic Solution). Briefly, gel pieces
were washed twice by successive baths of 10% acetic acid,
40% ethanol and acetonitrile (ACN). They were then
washed twice with successive baths of 25 mM NH4CO3

and ACN. According to spot size, a solution containing 25
to 75 ng of porcine-modified trypsin (Promega, France)
dissolved in 20% methanol and 20 mM NH4CO3 was
added, and digestion was performed overnight at 37°C.
Peptides were extracted successively with 2% trifluoro-
acetic acid (TFA) and 50% ACN and then with ACN.
Peptide extracts were dried in a vacuum centrifuge and
suspended in 20 μl of 0.05% TFA, 0.05% HCOOH and
2% ACN.

Peptide masses from digested proteins were obtained
using a MALDI-TOF MS equipped with a N2 laser
(337 nm, 20 Hz, 3 ns impulsion; Applied Biosystems,
Voyager DE super STR). Samples were irradiated in a
matrix (α-cyano-4-hydroxycinnamic acid 4 mg/ml), and
spectra were acquired in reflectron mode within a 700- to
3,500-Da mass range and a 130-ns delay extraction time.
Internal calibration was performed using trypsin peptide
masses within a 500- to 5,000-Da mass range. PMF search
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was performed on V. vinifera database locally downloaded
from Uniprot (54411entries) using the protein prospector
software (http://prospector.ucsf.edu/ucsfhtml4.0/msfit.htm)
and with Aldente on TrEMBL database. Parameters for
peptide matching were a minimum of three matches with a
tolerance of 30 ppm, a maximum of one missed cleavage
and trypsin digestion, cys carboxyamidomethylation and
met oxidation were set to enzymatic cleavage, static and
possible modifications, respectively. When PMF search
does not allow functional protein identification, homology
searches were performed using MS BLAST at EMRL
(http://dove.embl-heidelberg.de/Blast2/msblast.html).

Statistical analyses

For shoot and root biomass, mycorrhizal colonisation and
normalized 2-DE spot volumes, means of each treatment
were compared using one-way analysis of variance
(ANOVA, p<0.05) using SAS software (Statistical Analy-
sis System 9.1; SAS Institute Inc., Cary, NC, USA). This
ANOVA was performed with non-transformed data after
ensuring conformity of these data with ANOVA assump-
tions. Percentage values of root colonisation were trans-
formed using arcsin function. Tukey’s test at p<0.05 was
used as a post hoc test when ANOVA showed significance.
Clustering was performed using GENESIS software (version
1. 7. 2; Graz University of Technology; Institute for Genomics
and Bioinformatics, http://genome.tugraz.at). For that pur-
pose, quantitative variations in protein abundance between
treatments were represented by Log2 ratios of normalized
volume obtained by SameSpots image analysis. Euclidian
distances were then computed for all spots to build the
similarity matrix, and clustering was performed.

Results and discussion

Plant biomass and mycorrhizal parameters

Graphical representation showed that shoot biomass was
significantly higher (p<0.05) in AM-colonised (G. irregulare
or G. mosseae) plants than in those non-colonised (Nm;
Fig. 1a), while root biomass was only significantly higher
relative to control in G. mosseae-colonised plants (Fig. 1b). P
content was 2.6 mg g−1 in mycorrhizal plants and 1.6 mg g−1

in non-mycorrhizal plants, which correspond to deficient and
sufficient levels, respectively (Robinson et al. 1997).

Although frequency of infection was similar for the two
AMF (F=96.8±3% and 91.6±6% for G. irregulare and G.
mosseae, respectively), both intensity of root cortex AM
colonisation (M%) and abundance of arbuscules (A%) were
significantly higher (p<0.05) in G. irregulare- than in G.
mosseae-colonised plants (Fig. 2 a, b).

The shoot biomass increase in AMF-colonised plants is
consistent with previous study carried out with grapevine
SO4 rootstock inoculated by two other AMF, Gigaspora
margarita and Scutellospora heterogama (Souza et al.
2004). In the present work, rootstock cuttings were
analysed 5 weeks after inoculation, corresponding to a
functional AM symbiotic stage, as judged by the percentages
of arbuscules observed (A=76±4% for G. irregulare- and
A=46±8% for G. mosseae-inoculated plants, respectively).

Proteome changes in SO4 grapevine rootstock

Root tissues of grapevines are well-known for their high
content in interfering compounds including polysacchar-
ides, pigments and phenolics, which, together with their
hardness, make their proteins challenging to extract and
resolve by 2-DE gels. The phenol-based method we used
showed a high efficiency for protein extraction and
resolution as previously reported for other recalcitrant plant
material (Saravanan and Rose 2004) as well as for the V.
vinifera cv. Cabernet Sauvignon grapevine (Marsoni et al.
2005). Indeed, after phenol extraction, 2-DE gel separation
of 500 μg of root proteins of the SO4 grapevine rootstock
and Coomassie blue staining, more than 600 well-resolved
spots were consistently detected in the whole set of gels.
Protein profiles corresponding to all treatments, analysed
using SameSpots software, resulted in spots that were

Fig. 1 Effect of mycorrhizal inoculation treatment on a shoot biomass
and b root biomass (g of fresh weight), 5 weeks after inoculation with
G. irregulare or G. mosseae. Means and standard errors are shown for
five replicates. Means followed by the same letter are not significantly
different according to Tukey’s test
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automatically numbered on a virtual reference 2-DE map
(data not shown). We detected a total of 52 protein spots
whose accumulation was significantly different for at least
one treatment (Nm, G. irregulare, G. mosseae). They were
all sampled and analysed by MALDI TOF/MS for peptide
PMF identification. Out of these, 39 spots, arbitrarily
named 1 to 39 in Table 1, gave positive hits following
PMF search when queries were performed on V. vinifera or
TrEMBL database. Most of the hits matched to V. vinifera
uncharacterized proteins or “chromosome” annotations
without known functions. However, following MS BLAST
search, all the proteins had known or predicted roles and
were therefore functionally classified using the FunCat
annotation scheme (Ruepp et al. 2004; Table 1). Figure 3
shows a representative Coomassie blue-stained 2-DE
profile of SO4 grapevine rootstock root proteins, on which
are featured the 39 identified plant proteins.

The groups of proteins responding to G. irregulare or G.
mosseae inoculation relative to control plants were further
compared by a tree clustering method using Genesis
software (Fig. 4). When roots were colonised with G.
mosseae or G. irregulare, a similar trend can be noticed in
spot volume variations with six and 18 spots significantly

up- and down-accumulated in response to root colonisation
regardless of the AMF (Fig. 4 lanes Gi/Nm and Gm/Nm).
The 39 proteins which were identified belonged to ten
functional categories, i.e. carbon metabolism (spots 3, 15, 16,
19, 22, 24, 25, 28, 29, 34, 35, 39), protein synthesis and fate
(spots 5, 6, 11, 14, 23, 30, 32, 36, 37, 38), energy (spots 13,
21, 26), defence and cell rescue (spots 7, 8, 27), signalling
(spots 17, 18), transport (spot 20), cell cycle (spot 33),
ethylene biosynthesis (spot 10), lignin and anthocyanin
biosynthesis (spots 2, 4) and, finally, miscellaneous metab-
olisms (spots 1, 9, 12, 31; Table 1 and Fig. 4).

Carbon metabolism

The abundances of several proteins that participate in carbon
metabolism showed obvious differences in response to AMF
colonisation of SO4 roots. These proteins were involved in
TCA cycle, pentose phosphate pathway and glycolysis. Thus,
spot 24, a glucose 6-phosphate dehydrogenase, an enzyme of
the pentose phosphate pathway, and spot 39, a precursor of a
plastidic isoform of NAD-dependent malate dehydrogenase,
were the only ones significantly up-accumulated in G.
irregulare-colonised plants. Among the down-accumulated
spots, several enzymes of the glycolysis pathways were
misrepresented, including two fructose biphosphoaldolases
(spots 22, 35), two isoforms of a phosphoglyceromutase
(spots 3, 25) and a putative pyruvate dehydrogenase E1 alpha
subunit (spot 28). Pyruvate dehydrogenase (E1) is the first
component enzyme of pyruvate dehydrogenase complex,
which contributes to transform pyruvate into acetyl-CoA by
pyruvate decarboxylation, linking the glycolysis metabolic
pathway to the TCA cycle. In agreement with the apparent
down-regulation of the glycolysis pathway we noticed, the
down-accumulation of a mature mitochondrial malate dehy-
drogenase (spot 29) involved in the TCA cycle was also
recorded. An alcohol dehydrogenase-like protein (spot 34)
was down-accumulated in response to both AMF. Alcohol
dehydrogenase is one of the anaerobic proteins catalysing the
reduction of pyruvate to ethanol, resulting in continuous
NAD+ renewal. Roots are frequently submitted to anaerobic
growth conditions (Chung and Ferl 1999), and the down-
accumulation of this protein that occurred in SO4 roots
upon their AMF colonisation could be interpreted as
having a protective effect of the AM symbiosis. A
phosphoserine amino transferase protein (spot 15) was
recorded as down-accumulated in SO4 roots either
colonised with G. irregulare or G. mosseae. Phosphoser-
ine amino transferase acts in the production of phospho-
serine to yield L-serine, located at a crossroad of protein
synthesis, but might also operate as a potential donor of
carbon for glycine and NH2 in purin biosynthesis. Spot 16
identified a formate dehydrogenase (FDH), an enzyme
located in mitochondria that catalyses the oxidation of

Fig. 2 Comparison of a intensity of the mycorrhizal colonisation in
the root system (M%) and b arbuscule abundance in mycorrhizal parts
of root fragments (A%) as affected by AMF inoculation (non-
mycorrhizal inoculation, G. irregulare and G. mosseae inoculation).
Means are shown for five replicates. Means followed by the same
letter are not significantly different according to Tukey’s test
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formate to CO2 together with reduction of NAD to NADH.
FDH plays a crucial role in the biosynthesis of compounds
involved in energetic metabolism and in stress-induced signal
transduction pathways. Synthesis of FDH, as well as over-
expression of the corresponding transcripts, dramatically
increases under various stresses such as low temperature,
drought and hypoxia (Hourton-Cabassa et al. 1998) and even
in some root symbioses (Krüger et al. 2004; Andreadeli et al.
2009), a result that was interpreted as linked to the generation
of reducing equivalents, contributing to support cellular
metabolism under stress conditions and relative hypoxia in
the respective tissues. Thus, the down-accumulation of FDH
reported here in G. irregulare-colonised SO4 roots could
again illustrate the bioprotective effect of the AM symbiosis
by decreasing the accumulation of a stress-related protein.
Concomitantly, there was a down-accumulation of spot 19
that corresponded to a GDP-3′5′-epimerase-like (spot 19)
which, by converting GDP-d-mannose to GDP-l-galactose, is
considered to be a central enzyme of the major ascorbate
biosynthesis pathway in higher plants. The antioxidant role
played by L-ascorbic acid makes this small molecule a crucial
component of the plant response to different stress agents
(Valpuesta and Botella 2004).

Protein synthesis and fate

Several proteins playing roles in protein synthesis and fate
were differentially accumulated in response to AMF

colonisation. Among the up-accumulated spots were two
proteins that corresponded to a subtilisin-like protease (spot
32) and a putative signal peptidase (spot 5). Signal
peptidases are proteases that cleave away the amino-
terminal signal peptide from a translocated pre-protein.
Their role in vivo is to release exported proteins from the
membrane so they reach their correct cellular or extra-
cellular locations (Palma et al. 2002). Since the first report
on serine protease isoform activities related to the AM
symbiosis (Slezack et al. 1999), activation of serine
protease genes upon AM colonisation has consistently been
reported (Liu et al. 2003; Güimil et al. 2005). The
expression patterns and function of two AM-induced
subtilase genes have been recently investigated in Lotus
japonicus, demonstrating the involvement of the gene
products during the development of arbuscules (Takeda et
al. 2009). The up-accumulation of two proteases reported in
this study is therefore in good agreement with the above-
cited works. An ubiquitin carrier protein (spot 38) was
significantly co-accumulated with either AMF isolate.
Ubiquitin carrier proteins (also called ubiquitin-conjugating
enzymes, E2) belong to the ubiquitin/proteasome system in
which they catalyse the transfer of the activated ubiquitin
moiety to a member of the ubiquitin ligase family (Zeng et al.
2006). An ubiquitin carrier protein was recently reported as
up-accumulated in response to G. irregulare colonisation of
Medicago truncatula roots (Aloui et al. 2009). In the present
work, two other proteins involved in the proteasome protein
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Fig. 3 Representative image of
a Coomassie blue-stained 2-DE
gel showing the 39 spots differ-
entially accumulated in response
to AMF inoculation in
5-week-old SO4 rootstock roots
that where identified following
PMF search. Five hundred
micrograms of total proteins
were separated on 18-cm non-
linear pH 3–10 IPG strips for the
first dimension and on 12% SDS
vertical gel for the second
dimension. Molecular markers
are indicated on the left
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complex (spot 36, a 26S proteasome subunit, and spot 23, a
proteasome subunit alpha type-6) were recorded as up-
accumulated, although for the latter with significant volume
variation only in response to G. mosseae colonisation,
reflecting a profound protein turnover occurring upon AM
colonisation process. The only protein significantly over

accumulated in G. mosseae-inoculated roots was a glycine-
rich, RNA-binding protein (spot 14) while a putative RNA-
binding protein (spot 6) was recorded as significantly down-
accumulated upon colonization with both AMF. RNA-
binding proteins (RBPs) play key roles in post-
transcriptional control of RNAs, which, along with transcrip-
tional regulation, is a major way to regulate patterns of gene
expression during development. Transcript over-expression of
glycine-rich RBPs have been reported to occur in AM
symbiosis of Ligustrum japonicum and M. truncatula roots
in response to G. mosseae or G. margarita colonisation
(Grunwald et al. 2004; Hohnjec et al. 2005; Deguchi et al.
2007). Two proteins belonging to the chaperonin family (spot
11, a putative T-complex protein 1, and spot 37, a chaperonin
60) displayed significant reduced amounts upon SO4 root
colonisation with both AMF. Chaperonin 60, usually located
in mitochondria and plastids, acts on the folding and assembly
of imported proteins, while the cytosol TCP-1 complex has a
role in the folding of actin and tubulin. Interestingly, we also
observed the down-accumulation of actin (spot 30). In AM
symbiosis, both tubulin organised in microtubules and actin
filaments, major components of the plant cytoskeletal system,
become closely associated with intracellular hyphae (Genre
and Bonfante 1998). Based on a time course analysis in
relation to mycorrhizal colonisation of tomato, Timonen and
Smith (2005) stated that the contribution of actin was less
important compared to that of tubulin in AM symbiosis.
However, these authors used an actin antibody directed
against both plant and fungal antigens. The decrease of actin
we observed in well-colonised grapevine roots might there-
fore be closer to what happens in mature mycorrhizas.

Energy

The up-accumulation of two proteins, a putative adenosine
triphosphate (ATP) synthase delta chain (spot 13) and a
mature ATP synthase beta subunit (spot 21), belonging to
the mitochondrial F1-ATP synthase complex was recorded.
This complex synthesizes ATP from adenosine diphosphate
and inorganic phosphate (Pi) by using electrons generated
through the respiratory chain. Because ATP is the common
“energy currency” of cells, ATP synthases are of crucial
importance in all organisms. With respect to its Mr, spot 26
corresponded the precursor of a ATP synthase subunit beta,
and thus, the down-accumulation reported here is in
agreement with the up-accumulation of spot 21, the mature
form of the ATP synthase beta subunit.

Defence and cell rescue

The amounts of proteins having role in defence mechanisms
and cell rescue also showed clear differences in response to
AMF colonisation. Most of them were noted as down-

Fig. 4 Clustered abundance pattern using GENESIS software of the
39 proteins identified, as represented by the Log2 transformation of
the mean (n=4) of each spot volume ratio relative to control plants
(Nm). Each row of coloured boxes is representative of a single spot,
and each mean ratio per treatment is represented using a single
column. The red colour (+1) indicates the highest up-accumulation
and the green colour (−1) indicates the highest down-accumulation.
Dark boxes (0) indicate no changes in protein abundance compared to
control. After Tukey’s test, significant differences in protein abun-
dance of each treatment (G. irregulare, G. mosseae) relative to control
are indicated by asterisks. Protein spots are numbered according to
Table 1 and Fig. 3
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accumulated. This is the case for a peroxidase precursor (spot
27), a catalase (spot 8) and a monodehydroascorbate reductase
MDAR (EC 1.6.5.4; spot 7) classified in the defence and cell
rescue protein category. MDAR is a component of the
glutathione-ascorbate cycle, which is one of the major
antioxidant systems of plant cells for protection against the
damages produced by reactive oxygen species. The lower
abundance of several proteins involved in plant defence
reported here in response to AMF colonisation of a ligneous
plant species is thus in good agreement with the modulation of
plant defence mechanisms upon AMF colonisation that has
been largely documented (Dumas-Gaudot et al. 2000; Garcia-
Garrido and Ocampo 2002; Pozo and Azcón-Aguilar 2007;
St-Arnaud and Vujanovic 2007).

Signalling

Two proteins belonging to the signalling category (spot 18, a
TGF-beta receptor-interacting protein 1, and spot 17, a CBS1
fragment) were recorded as up-accumulated in mycorrhized
SO4 roots. Plant TGF-beta receptor-interacting proteins, which
share high homology with the TGF-β family of polypeptide
growth factors of the animal kingdom playing prominent roles
in development and homeostasis of organisms, were also
suggested to be required for the normal execution of several
plant developmental programs (Jiang and Clouse 2001). An
increased accumulation of such a protein has been recently
reported (Aloui et al. 2009). Spot 17 matched to a CBS1
fragment that corresponds to an evolutionarily conserved
protein domain, i.e. the cystathionine-b-synthase (CBS)
present in the proteome of archaebacteria, prokaryotes and
eukaryotes. Depending on the protein in which they occur,
CBS domains have been proposed to affect multimerization
and sorting of proteins, channel gating and ligand binding.
CBS domains can bind adenosine-containing ligands such
ATP, AMP or S-adenosylmethionine and may function as
sensors of intracellular metabolites (Ignoul and Eggermont
2005). Compared to control roots, the cystathionine-b-
synthase CBS1 fragment displayed an increased amount,
although only significant upon G. irregulare root colonisation,
a fact that could be related to the higher root colonisation level
which was reached with this AM fungus.

Transport

Within the protein transport category, only one protein (spot
20) was recorded as differentially accumulated in mycorrh-
ized roots. Its amount was significantly reduced in SO4
roots only in response to G. irregulare colonisation. It
corresponded to an importin alpha-like protein acting as an
adaptor protein to help protein transport through the nuclear
membrane, which is supposed to have an important role in
plant signal transduction (Meier 2007).

Cell cycle

A putative cell division control protein (spot 33) involved
in cell cycle was identified as up-accumulated only in
response to G. irregulare colonisation of SO4 roots.
Although cell division is not occurring in response to
AMF colonisation, cell differentiation might be associated
with DNA amplification and polyploidization, a process
well documented in AM symbiosis (Berta and Fusconi
1997). The specific up-regulation of a cullin gene,
mediating the control of cell cycle in mycorrhizal tomato
roots, was thus proposed to be related to the endoredupli-
cation process leading to the formation of 8C nuclei in
AMF-colonised cells (Tahiri-Alaoui et al. 2002).

Lignin and anthocyanin biosynthesis

Two proteins that, to our knowledge, have not yet been
reported as differentially accumulated in arbuscular my
corrhizal symbiosis were noticed as down-accumulated
in SO4 roots upon their AMF colonization. Thus, a
cinnamyl alcohol dehydrogenase (spot 2) involved in the
lignin biosynthesis pathway showed a reduced amount in
response to both AMF, as did an anthocyanidin dioxyge-
nase (spot 4) that catalyses conversion of flavan-3,4-diols to
3-hydroxyanthocyanidins. Apart from their widely reported
roles in roots under osmotic or toxin stress (Chalker-Scott
1999), modulation of anthocyanin accumulation is a
characteristic response of plants to long-term Pi deficiency
(Misson et al. 2005).

Ethylene biosynthesis

A protein also recorded as commonly down-accumulated was
spot 10, identified as a 1-aminocyclopropane-1-carboxylic
acid oxidase (ACC oxidase) involved in ethylene biosynthe-
sis. In Solanum tuberosum roots grown under low phosphate
supply, lower activities of ACC oxidase were reported to be
concomitant to higher AM colonization, and an increase of P
supply reversed ACC oxidase activity and intensity of
colonisation. The reduced ACC oxidase activity, leading to
decrease amounts of root ethylene, was interpreted as a
mechanism by which plants under the P-deprived stress
allow the AM fungus to colonise roots by repressing defence
mechanisms (McArthur and Knowles 1992). Indeed, in
many host–microbe interactions, ethylene is usually associ-
ated with or induces diverse biochemical pathways consid-
ered integral to a plant defence response.

Proteins involved in miscellaneous metabolisms

Four proteins involved in several metabolic pathways were
recorded as differentially accumulated in response to the
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AMF colonisation. For example, spot 1 was, comparatively
to control roots, up-accumulated in G. irregulare-colonised
SO4 roots. This spot matched to an aspartate carbamyl
aminotransferase involved in the synthesis of pyrimidine
nucleotides. On the contrary, three other spots (spots 9, 12
and 31) whose amounts were significantly reduced with
both AMF were noticed. Spot 9 was identified as a putative
phosphoesterase, belonging to a large family of proteins,
which includes phosphatases (EC. 3.1.3.2). Acid phospha-
tases (APases) play a key role in phosphate acquisition by
plants, but except for a few enzymes performing specific
metabolic functions, it is difficult to ascribe a precise role to
most of them (Duff et al. 2006). Hydrolysis of phosphate
esters is a critical process in the energy metabolism, and
metabolic regulations of plant cell intracellular APases are
undoubtedly involved in the routine utilization of Pi
reserves or other Pi-containing compounds. Thus, in
mycorrhizal plants grown under low P availability for
which the AMF fungus will drive up phosphorous from soil
to the roots, a reduced amount in plant phosphoesterase in
response to AMF colonisation is expected. Besides, two
enzymes involved in nucleotide metabolism were identi-

fied: Spot 12 corresponded a putative dehydrogenase with
dihydroorotate oxidase activity that catalyses the formation
of orotate from dihydroorotate within the pyrimidine
biosynthetic pathway, spot 31 matched to an adenosine
kinase also named ATP:adenosine 5′-phosphotransferase
which participates to purine metabolism, namely within the
salvage purine degradation pathway. Nucleotides are crucial
cellular components for plant growth, development and
metabolism. Besides their roles as building blocks of DNA
in the nucleus or DNA-synthesizing organelles and as
components of transcripts, they also play a unique role in
transferring phosphate into macromolecules like nucleic
acids and phospholipids (Zrenner et al. 2006). Notably, one
of the early changes in response to Pi deprivation is a
decrease in the levels of nucleotides (Raghothama 1999).
The decreased amounts reported here for spot 12 and 31,
corresponding to pyrimidine and purine salvage enzymes,
could be interpreted as linked to a reorganisation of
phosphate fluxes within cell roots upon AMF colonisation.
Indeed, beside the induction of specific Pi transporters in
mycorrhizal roots (Javot et al. 2007; Branscheid et al. 2010
and references therein), a parallel down-regulation of
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conventional Pi-uptake systems leading to a reorganisation
of Pi uptake does exist (Bucher 2007).

In summary, in this study, a total of 24 proteins were co-
identified in SO4 rootstock upon colonisation with G.
irregulare and G. mosseae (Fig. 4). This means that 61.5%
of the AM-related protein modifications were conserved
upon root colonisation with the two AMF, highlighting
proteins that may be essential to symbiosis. This is in line
with a recent report in M. truncatula roots colonised by the
same strains of AMF (Recorbet et al. 2010). Thus, our data
brought evidence for the first time in a perennial plant
species, of a conserved proteomic response to different
AMF species. However, contrasting to the publication of
Recorbet et al. (2010) in which 11 proteins turned out to be
of fungal origin, all the co-identified proteins of our study
were of plant origin (Table 1). The failure to detect any
fungal proteins in the symbiotic phase is likely to account
for the mass spectrometry process used in the current work,
as MALDI-TOF MS is known to be less efficient for
organisms for which information at the nucleic acid level is
restricted (Thelen 2007). Unexpectedly compared to previ-
ous AM symbiotic proteomes described so far (Bestel-
Corre et al. 2002, 2004; Valot et al. 2005; Aloui et al. 2009;
Recorbet et al. 2010, Schenkluhna et al. 2010), in AMF-
colonised SO4 grapevine rootstock, much more co-
identified proteins were recorded as down-accumulated
(25) than up-accumulated (14). These data together with
the limited overlap of proteins previously ascribed as
mycorrhiza-related in herbaceous plants could indicate that
AMF colonization of a ligneous plant species such as
grapevine results in a more drastic reprogramming of host
genes in order to accommodate the AMF, a conclusion that
is schematically illustrated in Fig. 5, in which are presented
the main proteins modulated in SO4 rootstock cuttings
upon AMF colonization.

Remarkably, among the numerous proteins we recorded as
down-accumulated in response to the AM symbiosis were
several proteins known to be involved in plant adaptation to P
deficiency. Plants acquire P as the inorganic phosphate ions
(Pi) through Pi transporters in the roots (Marschner 1995).
Moreover, plants have evolved sophisticated metabolic and
developmental strategies to enhance P acquisition and
remobilization in Pi-limiting conditions (Raghothama
1999). Recently, the molecular mechanisms were unravelled
thanks to the identification of several genes involved in the
regulation of Pi homeostasis (Abel et al. 2002; Poirier and
Bucher 2002; Franco-Zorrilla et al. 2004; Yuan and Liu
2008; Lin et al. 2009). Interestingly, among the phosphate
starvation-responding genes/proteins reported, there were
proteins involved in carbon metabolism (some of them
having potential function in signalling P deficiency),
P remobilisation (such as phosphatases, pyrimidine and
purine salvage enzymes etc.), stress and defence, develop-

ment and root architecture and anthocyanin biosynthesis
(Misson et al. 2005; Li et al. 2007, 2008, 2009; Valdes-
Lopez and Hernandez 2008). It is therefore noteworthy that
in the present work several proteins regarded as belonging to
such functional categories were recorded as conversely
accumulated upon AMF colonisation. One of the primary
advantages delivered by AMF to their hosts is undoubtedly
an improved mineral nutrition, particularly of P under
Pi-limiting conditions (Smith and Read 2008), as was the
case in this experiment. A crucial role of AMF in P
acquisition, together with their capacity to store polyphos-
phates, relates to the development of a huge network of
hyphae, which substantially extend the rhizospheric
Pi depletion zone (Harrison 1999). Besides, AMF-colonised
plants reprioritize their phosphate (Pi)-uptake strategies to
take advantage of nutrient transfer via the fungus. The
mechanisms underlying Pi transport are beginning to be
understood, and recently, details of the regulation of plant
and fungal Pi transporters in the AM symbiosis have been
revealed (Javot et al. 2007; Branscheid et al. 2010 and
references therein). Our proteomic study shed light on the
molecular mechanisms that prevail during the AMF
symbiosis of a perennial woody plant species, with
notably a reverse effect of P deficiency affecting several
categories of proteins. Further studies will compare the
root proteome responses upon AMF colonisation and
P supply. Additionally, time course proteomic studies in
AMF-colonised SO4 grapevine rootstocks combined with
either more sensitive 2D DIGE proteomic strategies or
subcellular enrichment of a given cell root compartment
will allow to further characterized the mycorrhiza responsive
proteome of grapevine. Ongoing experiments are targeted to
the microsome root compartment in order to reveal membrane
proteins that could have essential functions in transport and
signalling upon AMF colonization of a plant species with
worldwide economic importance.
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